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118 route de Narbonne, F-31062 Toulouse Cedex, France

Received: 1 September 1998

Abstract. The Hubbard model is applied to icosahedral, face-centered cubic (FCC), hexagonal close-packed
(HCP), and body-centered cubic (BCC) clusters having N = 13 atoms. Exact ground-state results are given
as a function of the Coulomb repulsion strength U/t, number of electrons ν, and total spin S. Electron
correlation effects on magnetic behavior and structural changes are discussed.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 75.10.Lp Band and itinerant models –
71.24.+q Electronic structure of clusters and nanoparticles

1 Introduction

Electron correlations in finite systems, and the many-body
effects which result from them, are subjects of main in-
terest in current cluster research. As in the solid state,
magnetism is one of the most fascinating and challenging
related problems. Consequently, a large body of experi-
mental and theoretical work has been focused on this sub-
ject [1, 2]. Most theoretical studies of cluster magnetism
have been performed using a mean-field treatment of the
electron–electron interactions such as the unrestricted
Hartree–Fock or local spin density approximations [2].
Still, a detailed understanding of the electronic correla-
tions responsible for the magnetic behavior of clusters is
important, not only from a fundamental standpoint, but
also in view of the description of more delicate properties,
such as excitation spectra and temperature dependences.
Full many-body calculations of magnetic properties have
been achieved only by the application of simple models,
mainly the Hubbard model [3], to systems with a small
number N of atoms [4, 5]. While rigorous results have been
obtained for N ≤ 8, the properties of larger systems re-
main largely unexplored. It would therefore be interesting
to extend the size range covered by these investigations.

Our purpose in the present contribution is to discuss
several ground-state and excited-state properties of clus-
ters havingN = 13 atoms in the framework of the Hubbard
model. Electron correlations are treated exactly within
Lanczos’ numerical diagonalization method. The struc-
tural dependence of the magnetic properties is studied by
the consideration of four different geometries: icosahedral
clusters, which maximize the average coordination num-
ber, face-centered cubic (FCC) and hexagonal close-packed
(HCP) clusters, which are examples of compact structures

found in the solid state, and body-centered cubic (BCC)
clusters, as an example of a rather open bipartite struc-
ture [6]. These clusters, which are formed by a central atom
and its nearest neighbors (NN) in the corresponding lat-
tices, are representative of the various types of geometries
found in rigorous optimizations forN ≤ 8 [5]. AtN = 13 in
particular, the compact structures (FCC, HCP, and icosa-
hedral) have a complete NN shell. In the following section,
the model Hamiltonian and the method of calculation are
briefly recalled. A summary of results on the ground-state
magnetic behavior and on the relative stability of the dif-
ferent structures is discussed in Sect. 3.

2 Theory

The magnetic properties of clusters are determined by the
consideration of the Hubbard Hamiltonian [3], which in the
usual notation is given by

H =− t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑ n̂i↓ . (1)

The first term is the kinetic-energy operator, which de-
scribes the electronic hopping between NN sites i and j
that lead to electron delocalization and bond formation
(t > 0). The second term takes into account the intra-
atomic Coulomb repulsion, which is the dominant contri-
bution from the electron–electron interaction (U ≥ 0) [3].
The model is characterized by the number of electrons ν (or
band filling ν/N) and by the dimensionless parameter U/t,
which measures the importance of correlations. U/t = 0
corresponds to the uncorrelated tight-binding or Hückel
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model, while for U/t=∞ (strongly correlated limit), dou-
ble electron occupations are forbidden on every site. The
electronic behavior results from the interplay between ki-
netic and Coulomb energies, which depends on U/t and on
the total spin S.

The properties of the Hubbard Hamiltonian are deter-
mined by expanding its eigenfunctions |Ψl〉 (|Ψ0〉= ground
state) in a complete set of basis states which have definite
electron-occupation numbers on all orbitals iσ [7]. |Ψl〉 is
written as

|Ψl〉=
∑
m

αlm|Φm〉 , (2)

where the |Φm〉 describe all possible electronic configura-
tions in real space (n̂iσ |Φm〉= nmiσ|Φm〉, with nmiσ = 0 or 1).
In practice, taking into account all configurations may in-
volve an important numerical effort, which limits consider-
ably the size of the clusters under study. For instance, the
dimension of the Sz = 1/2 (Sz = 0) subspace is of the order
of 106 (107) for N = ν = 13 (N = ν = 14).

In the present work, we use a Lanczos iterative method
which allows us to determine the lowest-energy eigenstate
for each value of S [8, 9]. If the ground state is sought, we
usually work in the subspace of minimal Sz (Sz = 0 or 1/2),
i.e., no restrictions are imposed on S. The actual ground-
state spin is determined, once convergence is achieved, by
the application the total spin operator Ŝ2. For other values
of S, we use higher values of Sz, and projection operations
of the form

|0〉=
[
Ŝ2−S′(S′+ 1)

]
|0̃〉 (3)

in order to remove unwanted components of spin S
′

from
the Lanczos starting vector |0〉. This restricts the spin of
the Krylov series and of the computed eigenstate |Ψl〉. The
convergence of the energy eigenvalue El is monitored as
a function of the number of Lanczos iterations M , and
the sequence is interrupted once |E(M)−E(M−5)|< ε.
In this way, the ground state and low-lying excited states
are obtained exactly within a controlled accuracy ε. In the
present calculations ε' 10−10 t.

3 Results and discussion

In Table 1 the ground-state spin of icosahedral, FCC, HCP,
and BCC clusters having N = 13 atoms is given. The re-
sults correspond to the Hubbard model in the limit of very
strong Coulomb repulsion (i.e., U/t→+∞). This is a par-
ticularly interesting limit from the point of view of corre-
lations, and it provides the most favorable conditions for
magnetism. For low electron or hole [10] concentrations,
the ground-state spin S can be understood by applying
Hund’s first rule to the single-particle (SP) spectrum of the
cluster as if it were a single structured atom. Thus, mag-
netic states (S ≥ 1) are obtained when orbital degeneracies
are present, or sometimes when the SP excitation energies
are small. This is the case, for example, in the FCC, HCP,

Table 1. Ground-state spin S in the limit of U/t=∞ of icosa-
hedral, FCC, HCP, and BCC clusters having N = 13 atoms
and ν electrons. For ν =N , S corresponds to U/t = 256. The
FCC structure with ν = 23 and 24 shows ground-state spin
degeneracy.

ν Icos. FCC HCP BCC

2 0 0 0 0
3 1/2 1/2 1/2 1/2
4 1 1 1 1
5 3/2 3/2 3/2 1/2
6 1 1 1 0
7 1/2 1/2 1/2 1/2
8 0 0 0 0
9 1/2 1/2 1/2 1/2

10 1 0 0 5
11 1/2 1/2 1/2 7/2
12 0 0 0 6
13 1/2 1/2 1/2 3/2
14 6 6 6 6
15 7/2 9/2 9/2 7/2
16 4 4 4 5
17 9/2 9/2 9/2 1/2
18 3 3 4 0
19 1/2 5/2 1/2 1/2
20 1 3 1 0
21 3/2 5/2 1/2 1/2
22 2 2 2 1
23 3/2 1/2, 3/2 3/2 1/2
24 1 0, 1 1 0

and icosahedral structures for ν = 4–6, where a 3-fold de-
generate SP level is partially filled at U = 0. A similar situ-
ation is found for a small number of holes νh = 2N −ν. For
instance, a saturated spin S = 3 (S = 3/2) is obtained in
the FCC (icosahedral) cluster, with νh = 6 (νh = 3), since
a 6-fold (3-fold) degenerate SP level is half filled. A particu-
lar effect is observed in the 13-atom FCC cluster for νh = 2
and 3. Here we find that two different S are degenerate for
all U/t≥ 0, which implies that a singlet (doublet) ground
state can be formed that has no empty-site configurations
– no double hole occupation on the same site – just as in the
fully polarized triplet (quartet). Otherwise, the degener-
acy would not hold for all U/t, since ∂E/∂U =

∑
i〈ni↑ni↓〉.

The exceptionally large 6-fold degeneracy of the highest
antibonding state seems to be at the origin of this effect,
which was not observed in the other cases. In the absence
of degeneracies, the ground state has usually the minimum
spin multiplicity (small ν or νh). For example, in the BCC
structure, there are no degeneracies at the extremes of the
SP spectrum, and thus S is minimal for ν ≤ 9 and ν ≥ 17
(see Table 1) [11].

The previous Hund-rule-like magnetic behavior is of
course expected for small or moderate U/t. However,
it is remarkable that it holds even in the limit of very
large Coulomb repulsion. Two main reasons contribute
to the validity of this simple interpretation: the pres-
ence of well-defined groups of levels having the same
or almost the same energy, and the fact that the car-
rier concentration is low. Moreover, these results reflect
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Fig. 1. Ground-state energy per atom
of 13-atom clusters as a function of
U/(U + 16t). The cluster structures and
the number of electrons ν are indicated.

the importance of electron correlations for determining
the relative stability of states having different magnetic
behaviors. In fact, in the Hartree–Fock approximation,
the energy of low-spin states is so overestimated that
for large U/t, a ferromagnetic-like ground state is al-
ways favored.

An interpretation of the magnetic properties in terms
of the SP spectrum is no longer possible close to half-band
filling (0.5 < ν/N < 1.5) where a more complex compe-
tition between low-spin and high-spin states is observed.
For 0.5< ν/N ≤ 1 the compact structures show low-spin
states, in most cases with the minimum spin multiplicity
(S = 0 or 1/2) [12]; see the results for the FCC, HCP,
and icosahedral clusters for ν = 10–13. In contrast, the
BCC structure develops large magnetic moments for ν =
10–12 and 14–16 [11]. In some cases, S is saturated for
U/t =∞. At half-band filling, the 13-atom BCC cluster
has S = 3/2 for all U/t [12], in agreement with a theo-
rem demonstrated by Lieb for the case of an even num-
ber of sites N [13]. The theorem states that for all U > 0,
the ground-state spin S of the half-filled Hubbard Hamil-
tonian on a bipartite lattice is S = |NA−NB|/2, where
NA and NB are the number of sites belonging to the
two sublattices A and B (N =NA+NB even) [13]. Phys-

ically, the result may be visualized as the spin of a per-
fect antiferromagnetic Néel state with sublattice magne-
tizations NA/2 and −NB/2, which need not cancel each
other. For ν > N , the compact structures, which are also
the most stable geometries at these band fillings, develop
large magnetic moments. For ν =N+1 = 14, all structures
show saturated ferromagnetism, as predicted by Nagaoka’s
theorem (U/t= +∞) [14]. A strong tendency to ferromag-
netism is also observed for ν/N = 1.2–1.4. In particular,
for ν = 17, all compact structures show the same maxi-
mal S = 9/2.

In Fig. 1, the ground-state energy of 13-atom clusters
are given as a function of U/t, for the different consid-
ered structures and for representative numbers of elec-
trons in the range 10 ≤ ν ≤ 20. For smaller or larger ν,
the most stable geometries (among the considered ones)
are the icosahedron for ν ≤ 9 and the BCC structure
for ν ≥ 21. This holds for all values of U/t, i.e., the
geometry which yields the lowest kinetic energy (uncor-
related limit) remains the most stable one, irrespective
of the strength of the intra-atomic Coulomb interac-
tion. In these cases, the corresponding ground state S
is small, though not always minimal. S ≥ 1 is also ob-
served, even for small U/t, as a result of the polarization
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of degenerate or quasi-degenerate SP levels. One concludes
that for low carrier concentrations (electrons or holes),
the effects of Coulomb interactions are considerably re-
duced by correlations, so that the magnetic and geometric
structures of the clusters are dominated by the kinetic
term. As already observed in smaller clusters (N ≤ 8 [5])
for small ν, the most compact structures (e.g., icosahe-
dra) yield the lowest energy, while for small νh, rather
open bipartite structures (e.g., BCC) are the most sta-
ble. This can be qualitatively understood in terms of the
SP spectrum. In the first case (small ν), the largest sta-
bility corresponds to the largest bandwidth for bonding
states, which is achieved by the most compact structure
(εb ≤−z̄t). In the second case (small νh) the largest stabil-
ity is obtained for the largest bandwidth for antibonding
(positive-energy) states which corresponds to bipartite
structures.

Close to half-band filling (10 ≤ ν ≤ 20), the effects of
correlation on structure and magnetism are more import-
ant. Several structural changes are observed as a function
of U/t. For ν = 10–13, the compact structures have very
similar energies, particularly for large U/t. For ν = 10, the
most stable geometry is the icosahedron if U/t < 27.19 and
the HCP cluster otherwise. For ν = 12, a more complex
sequence of structures is obtained: FCC for U/t < 5.79,
icosahedral for 5.79<U/t < 10.94, HCP for 10.94<U/t <
260.9, and finally, BCC for U/t > 260.9. In the last case
(BCC structure), the ground state shows saturated fer-
romagnetism (S = 6), while in all other cases, S = 0. It
is in fact the onset of ferromagnetism that stabilizes the
BCC structure with respect to the compact structures
as the Coulomb repulsion increases. For ν = 13, the spin
of the lowest-energy geometry is always S = 1/2, corres-
ponding to frustrated antiferromagnetism. In contrast, for
ν = 14 and 15, the change from FCC to icosahedral struc-
ture is accompanied by an important increase of the total
magnetic moment. For example, for ν = 15, S = 1/2 in
the FCC structure (U/t < 24), and S = 5/2 or 7/2 in the
icosahedron (U/t > 6.5). One concludes that these struc-
tural changes are driven by ferromagnetism. Notice that
the high-spin states have a nearly completely filled ma-
jority band (ν > N), and therefore the structural stability
is dominated by the minority electrons. Since the minor-
ity band contains a small number of electrons, the most
compact structures (icosahedral or FCC) are favored when
ferromagnetism dominates at large U/t. A similar situ-
ation is found for ν = 20. In the FCC structure, the spin
is saturated (S = 3) already for very small U/t, and con-
sequently, the ground-state energy is independent of U/t.
In contrast, the BCC structure, which yields the lowest
kinetic energy and is therefore the most stable for small
U/t, has S = 0 for all U/t, and the HCP and icosahedral
clusters have S ≤ 1. Since the low-spin structures are desta-
bilized by an increase in the Coulomb repulsion U/t, the
FCC geometry yields the lowest energy in the strongly cor-
related limit.

To conclude, it is important to recall that the limited
set of structures considered in this paper does not necessar-
ily include the most stable one. In fact, previous geometry
optimization studies of small clusters (N ≤ 8) have already

shown that the symmetry of the optimal structures is of-
ten reduced by distortions or rearrangements of bonds [5].
This could also affect the magnetic behavior, since lower-
symmetry structures may be found that are stabilized by
the removal of SP degeneracies (the Jahn–Teller effect),
and which then often show minimal S. In order to explore
the problem, we have considered a few additional struc-
tures for N = 13, which are derived from the perfect FCC
and icosahedral clusters by the distortion of the cluster sur-
face (e.g., by the removal of one or two surface bonds). As
in smaller clusters, one observes that distortions may re-
sult in an energy lowering at intermediate values of U/t,
thereby improving the ground-state geometry. In any case,
the calculated energy differences are very small (see Fig. 1
for ν = 13), which suggests that similar structures may eas-
ily coexist at finite temperatures (small surface melting
temperatures). For definitive conclusions on the interde-
pendence of correlations, magnetism and cluster structure
in this size range, geometry optimization studies would be
useful.
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